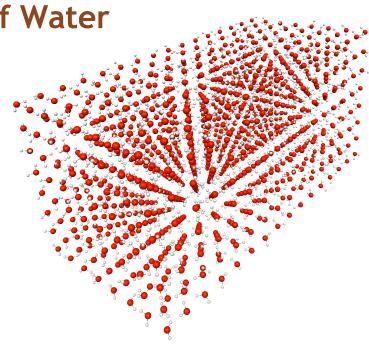
ALCF Early Science Program


ESP Kick-Off Workshop Project Plan Presentation

High Accuracy Predictions of the Bulk Properties of Water

PI: Mark Gordon

Presenter: Graham Fletcher

October 18-19, 2010

Project Overview

Calculate 10 bulk properties of liquid water with ab initio cluster simulations

- Settle scientific debate whether chain/ring networks are a factor in the bulk properties of water
 - Mira will allow first principles simulations of several thousand water molecules. Intrepid allows simulations of at most 512 waters.
- Reduce errors in predictions of bulk properties by factor of ten

Scientific Field: Chemistry

Codes: GAMESS

Project Overview

Calculate 10 bulk properties of liquid water with ab initio cluster simulations

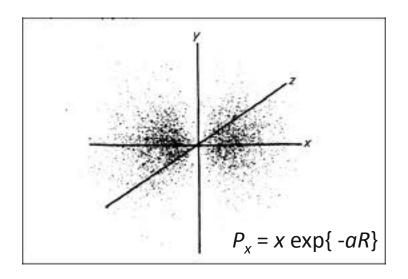
- Settle scientific debate whether chain/ring networks are a factor in the bulk properties of water
 - Mira will allow first principles simulations of several thousand water molecules. Intrepid allows simulations of at most 512 waters.
- Reduce errors in predictions of bulk properties by factor of ten

Bulk Properties targeted:

- •Structure
- Density
- •Refractive index
- •Diffusion coefficient
- •Free energy
- Heat capacity
- •Dielectric constant
- Vaporization enthalpy
- •Isothermal compressibility
- •Thermal expansion coefficients

Scientific Field: Chemistry

Codes: GAMESS


Solutions to the Schroedinger Equation in a finite atomic basis set

- Solutions to the Schroedinger Equation in a finite atomic basis set
 - Fix atom positions in space while we solve the electronic structure problem

- Solutions to the Schroedinger Equation in a finite atomic basis set
 - Fix atom positions in space while we solve the electronic structure problem
 - Model the electrons using functions that obey the rules of quantum mechanics

- Solutions to the Schroedinger Equation in a finite atomic basis set
 - Fix atom positions in space while we solve the electronic structure problem
 - Model the electrons using functions that obey the rules of quantum mechanics

$$\hat{H}\Psi = E\Psi \dots < \Psi | \hat{H} | \Psi > = E < \Psi | \Psi > \dots$$

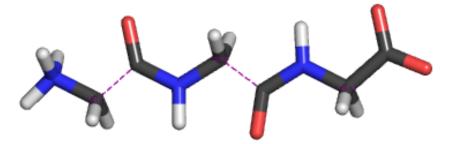
$$\hat{H}\Psi = E\Psi \dots < \Psi | \hat{H} | \Psi > = E < \Psi | \Psi > \dots$$

$$<\phi_1\phi_2... | ...1/R_{12}... | \phi_1\phi_2...>...$$

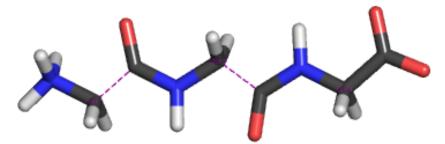
$$\hat{H}\Psi = E\Psi \dots < \Psi | \hat{H} | \Psi > = E < \Psi | \Psi > \dots$$

$$<\phi_1\phi_2...|...1/R_{12}...|\phi_1\phi_2...>...$$

$$\phi_{i} = \Sigma c_{\upsilon i} \eta_{\upsilon} ... < \eta_{\upsilon} \eta_{\upsilon} | 1/R_{12} | \eta_{\lambda} \eta_{\sigma} >$$

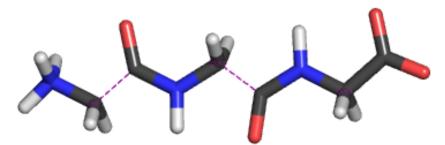

$$\hat{H}\Psi = E\Psi \dots < \Psi | \hat{H} | \Psi > = E < \Psi | \Psi > \dots$$

$$<\phi_1\phi_2...|...1/R_{12}...|\phi_1\phi_2...>...$$


$$\phi_{i} = \Sigma c_{\upsilon i} \eta_{\upsilon} ... < \eta_{\upsilon} \eta_{\upsilon} | 1/R_{12} | \eta_{\lambda} \eta_{\sigma} >$$

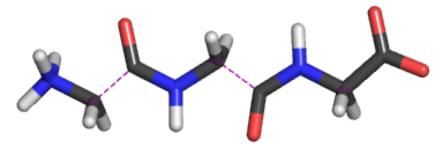
Kernels

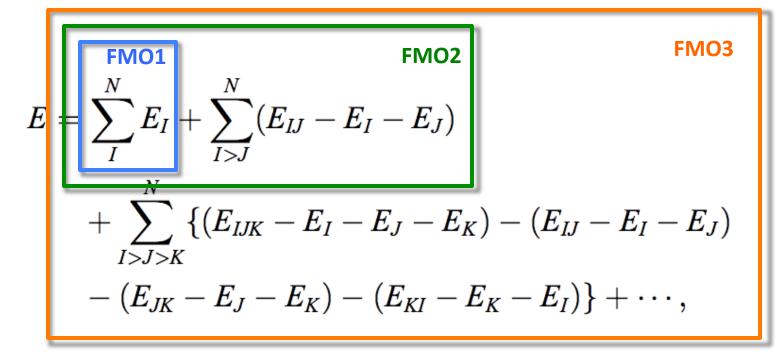
- Fourth-order: four-index integral computation from analytical formulae
- Third-order: linear algebra (diagonalization, etc)
- Higher order ('Electron correlation' models, e.q. MP2):
 - matrix transformation of integral set (fifth-order)


$$E = \sum_{I}^{N} E_{I} + \sum_{I>J}^{N} (E_{IJ} - E_{I} - E_{J})$$
 $+ \sum_{I>J>K}^{N} \{ (E_{IJK} - E_{I} - E_{J} - E_{K}) - (E_{IJ} - E_{I} - E_{J}) - (E_{JK} - E_{J} - E_{K}) - (E_{KI} - E_{K} - E_{I}) \} + \cdots,$

$$E = \sum_{I}^{FMO1} + \sum_{I>J}^{N} (E_{IJ} - E_{I} - E_{J})$$

$$+ \sum_{I>J>K}^{N} \{ (E_{IJK} - E_{I} - E_{J} - E_{K}) - (E_{IJ} - E_{I} - E_{J})$$


$$- (E_{JK} - E_{J} - E_{K}) - (E_{KI} - E_{K} - E_{I}) \} + \cdots,$$



$$E = \sum_{I}^{\text{FMO1}} E_{I} + \sum_{I>J}^{N} (E_{IJ} - E_{I} - E_{J})$$

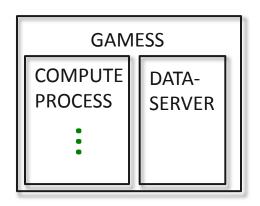
$$+ \sum_{I>J>K} \{ (E_{IJK} - E_{I} - E_{J} - E_{K}) - (E_{IJ} - E_{I} - E_{J})$$

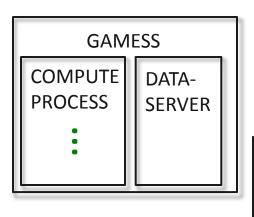
$$- (E_{JK} - E_{J} - E_{K}) - (E_{KI} - E_{K} - E_{I}) \} + \cdots,$$

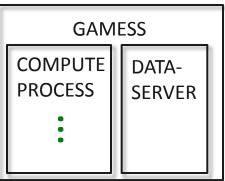
Parallelism and Existing Implementation

Coarse and fine-grained parallelism

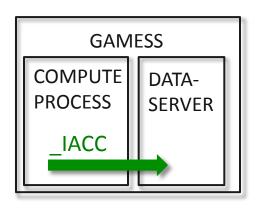
- GAMESS supports general process sub-groups for FMO
- One-sided data access operations (GET,PUT) support distributed data
- Static and Dynamic load-balancing are used
- MPI everywhere (no threads)
- I/O (minimal)
- Current Performance/Scalability
 - Scales to 131,072 cores on Intrepid: (FMO2-MP2 forces/aug-cc-pVDZ)

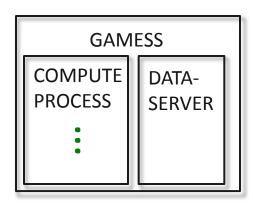

		Racks:	1	2	4	8	16	32
		Cores:	4096	8192	16,384	32,768	65,536	131,072
		Basis						
Waters	Atoms	Functions	Wall-time-to-solution (minutes)					
128	384	5504	8.6	4.8	2.7	1.8		
256	768	11,008	19.8	10.5	5.8	3.4	2.4	
512	1536	22,016		28.9	15.4	8.6	5.1	4.2
1024	3072	44,032			41.1	22.0	12.4	8.0

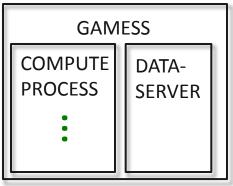

Library and Tool Dependencies

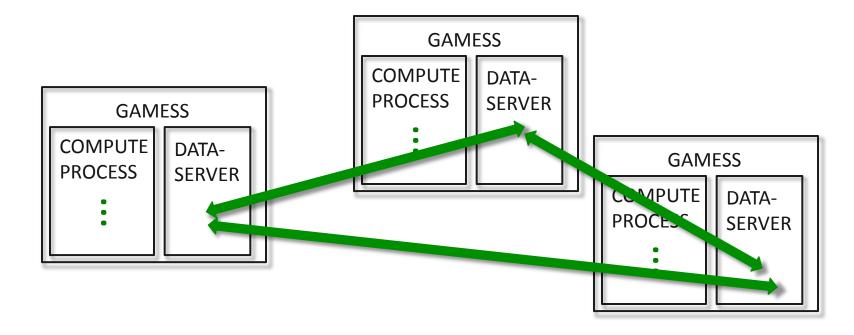

- Libraries (current)
 - MPI-1
 - BLAS (ESSL,GOTO)

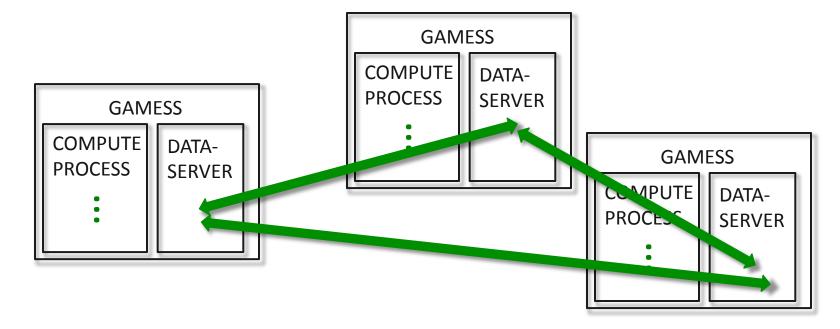
- Implement thread-based parallelism using OpenMP
- Adjustable data-server/node ratio
- Non-blocking communications via data-servers
 - Explicit overlap of communication with computation


- Implement thread-based parallelism using OpenMP
- Adjustable data-server/node ratio
- Non-blocking communications via data-servers
 - Explicit overlap of communication with computation






- Implement thread-based parallelism using OpenMP
- Adjustable data-server/node ratio
- Non-blocking communications via data-servers
 - Explicit overlap of communication with computation



- Implement thread-based parallelism using OpenMP
- Adjustable data-server/node ratio
- Non-blocking communications via data-servers
 - Explicit overlap of communication with computation

- Implement thread-based parallelism using OpenMP
- Adjustable data-server/node ratio
- Non-blocking communications via data-servers
 - Explicit overlap of communication with computation

- Performance and scaling needed to run proposed problem on Mira:
 - <5 wallclock minutes per timestep

Plan for Next 6 Months Effort

- Help find and hire a project postdoc
- Code developments begin on Blue Gene/P
 - Data-server(DS)/node
 - DS-DS communications
- Introduce OpenMP in main code kernels:
 - Integral Computation
 - Construction of 'Fock' matrix
- Benchmark performance on BG/P w.r.t.:
 - Threads/MPI task
 - Data-servers/node
- Use projections to estimate performance on BG/Q